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EVOLUTION OF LONG NONLINEAR WAVES ON THE INTERFACE

OF A STRATIFIED VISCOUS FLUID FLOW IN A CHANNEL

UDC 532.592:532.517.2D. G. Arkhipov1,2 and G. A. Khabakhpashev1,2

The dynamics of disturbances of the interface between two layers of incompressible immiscible fluids
of different densities in the presence of a steady flow between the horizontal bottom and lid is stud-
ied analytically and numerically. A model integrodifferential equation is derived, which takes into
account long-wave contributions of inertial layers and surface tension of the fluids, small but finite
amplitude of disturbances, and unsteady shear stresses on all boundaries. Numerical solutions of this
equation are given for the most typical nonlinear problems of transformation of both plane waves of
different lengths and solitary waves.

Key words: viscous fluids, interface, two-layer Poiseuille flow, long waves, nonlinear distur-
bances, solitary waves.

Introduction. Disturbances on free surfaces of shallow fluid layers with a shear in streamwise velocity have
been of interest for specialists for half a century (see, e.g., [1]). Attention to research of this kind has become even
more intense recently (see [2, 3] and other papers). In particular, Poloukhin et al. [4] performed measurements
under natural conditions and studied the effect of shear flows on the vertical structure and kinematic parameters of
internal waves. Arkhipov and Khabakhpashev [5] derived an evolutionary equation for plane nonlinear disturbances
of the interface of a two-layer Poiseuille flow. In contrast to other models, this equation takes into account unsteady
shear stresses on all boundaries of the system. It was found that the flow velocity and direction can alter not only
the wavelength but also the wave polarity. Dissipative losses being neglected, steady-state solutions of the type of
cnoidal and solitary waves were determined for a disturbed flow.

The present work is aimed at deriving a model equation for three-dimensional disturbances and analyzing
numerical experiments on transformation of various waves.

Formulation of the Problem and Simplification of Initial Equations. Let the fluids be bounded by
a rigid motionless lid (vertical coordinate z = h1) and a rigid motionless bottom (z = −h2), and the undisturbed
interface between the layers correspond to the coordinate z = 0. Then, the steady-state profile of horizontal velocity
consists of two segments of parabolas:

u0l = u0i(1 −Alz
2 −Blz),

u0i = −∇p0h1h2H/2
μ1h2 + μ2h1

, Al =
μ1h2 + μ2h1

μlh1h2H
, Bl =

μ1h
2
2 − μ2h

2
1

μlh1h2H
.

(1)

Here the gradient operator ∇ is determined in the horizontal plane (x, y), p is the pressure, H = h1 + h2, and μ is
the dynamic viscosity; the subscript 0 refers to steady-state values of the quantities, the subscripts l = 1 and 2 refer
to the upper and lower layers of the fluid, respectively, the subscript i refers to quantities on the interface.

The two-layer Poiseuille flow in a plane channel under consideration is the solution of the steady-state
equation of motion ∇p0 = μl d

2u0l/dz
2 with boundary conditions u0l = 0 for z = −(−1)lhl, u0l = u0i and
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Fig. 1. Sketch of a steady horizontal flow, shear profile, and disturbed flow caused by propagation
of a long wave in a two-layer system.

τl = μl du0l/dz = τ0i for z = 0. Figure 1 shows the profile of such a flow for a water–aniline system (μ1/μ2 = 0.225)
with h1/h2 = 2.

The original Stokes equations and continuity equations for disturbed motion of an incompressible fluid in
each layer can be written in a standard form as

∂ul

∂t
+ u0l · ∇ul + wl

du0l

dz
+ ul · ∇ul + wl

∂ul

∂z
+

1
ρl
∇pl = νl

(
∇2ul +

∂2ul

∂z2

)
; (2)

∂wl

∂t
+ u0l · ∇wl + ul · ∇wl + wl

∂wl

∂z
+

1
ρl

∂pl

∂z
+ g = νl

(
∇2wl +

∂2wl

∂z2

)
; (3)

∇ · ul +
∂wl

∂z
= 0. (4)

Here u is the horizontal component of the velocity vector of the fluid, t is the time, w is the vertical component of
the fluid velocity, ρ is the density, ν = μ/ρ is the kinematic viscosity, and g is the acceleration of gravity.

Let us make the following assumptions: 1) the characteristic horizontal size of the wave lw is substantially
greater and the disturbance amplitude ηa is substantially smaller than the equilibrium depths of the layers hl

(hl/lw ∼ ε1/2 and ηa/hl ∼ ε, where ε is a small parameter); 2) the capillary effects are small [modified Bond
number Bo = (ρ2 − ρ1)gh1h2/σ > 1, where σ is the surface tension]; 3) the boundary-layer thickness for disturbed
velocity remains small, i.e., the time of propagation of the unsteady boundary layer over the fluid thickness is
much greater than the characteristic time of wave propagation over a certain point of the examined region of the
channel tw (numbers of hydrodynamic homochromity Hoνl = νltw/h

2
l ∼ ε2). These assumptions correspond to test

conditions in various hydrodynamic laboratories.
The nonlinear terms in Eqs. (3) can be omitted as terms of negligible order of smallness (ul · ∇wl ≈ gε3 and

w2
l /u

2
l ≈ ε). Moreover, in the assumptions made, the first terms in the right sides of Eqs. (2) and the right sides of

Eqs. (3) can also be neglected. As a result, the following simplified system is obtained:

∂ul

∂t
+ u0l · ∇ul + wl

du0l

dz
+ ul · ∇ul + wl

∂ul

∂z
+

1
ρl

∇pl = νl
∂2ul

∂z2
; (5)

∂wl

∂t
+ u0l · ∇wl +

1
ρl

∂pl

∂z
+ g = 0. (6)

The following boundary conditions are imposed on the lid, bottom, and interface between the layers:

ul = wl = 0, z = −(−1)lhl,

u1 = u2 = ui, μ1
∂u1

∂z
= μ2

∂u2

∂z
= τi, w1 = w2 = wi =

∂η

∂t
+ (u0i + ui) · ∇η,

p1i = p2i + σ∇2η, z = η(t, x, y).
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Integrating Eqs. (6) with respect to z from z to η and using the dynamic boundary condition on the interface,
we find the pressure profiles in each layer of the fluid:

pl

ρl
=
pli

ρl
+ g(η − z) +

η∫

z

(∂wl

∂t
+ u0l · ∇wl

)
dz. (7)

Expressions (7) can be substituted into the equations of motion (5), (6), but first it is reasonable to take integrals
in dependence (7). It was shown [5] that, in a wide interval of depth ratios and moderate values of the steady-state
hydraulic pressure, the profiles of the vertical components of fluid velocities can be taken in a simple form, i.e., their
dependence on the z coordinate in each layer is linear:

wl =
hl + (−1)lz

hl + (−1)lη

(∂η
∂t

+ (u0i + ui) · ∇η
)
. (8)

For terms of the second order of smallness, the expressions are even simpler:

wl =
(
1 + (−1)l z

hl

)(∂η
∂t

+ u0i · ∇η
)

=
(
1 + (−1)l z

hl

) Dη

D0t
. (9)

In particular, relations (9) can be substituted not only into the integral terms of Eqs. (7), which take into account
the inertia of each layer of the fluid, but also into the nonlinear terms wl ∂ul/∂z of the equations of motion (5).

Dependences of Fluid Pressures and Velocities on Interface Disturbances. Substituting the for-
mulas for velocities (1) and the normal components of velocities (9) into Eqs. (7), we determine the vertical pressure
profiles:

pl

ρl
=
pli

ρl
+ g(η − z) +

η∫

z

(
1 + (−1)l z

hl

)
(1 −Alz

2 −Blz)u0i · ∇ Dη

D0t
dz

+

η∫

z

(
1 + (−1)l z

hl

) ∂
∂t

Dη

D0t
dz =

pli

ρl
+ g(η − z) −

(
z +

z2

2
(−1)l

hl

) ∂

∂t

Dη

D0t

−
[
z +

z2

2

( (−1)l

hl
−Bl

)
− z3

3

(
Al +Bl

(−1)l

hl

)
− z4

4
Al

(−1)l

hl

]
u0i · ∇Dη

D0t
. (10)

Then, applying the operator ∇ to Eq. (5) in a scalar manner and replacing ∇ · ul by −∂wl/∂z in the first three
terms of Eq. (5) with the use of the continuity equation (4), we obtain

− ∂2wl

∂t ∂z
− u0l · ∇∂wl

∂z
+ ∇wl · du0l

dz
+ ∇ ·

(
ul · ∇ul + wl

∂ul

∂z

)

+
1
ρl

∇2pl = νl
∂2

∂z2
(∇ · ul). (11)

Substituting the velocity profiles (1) and (8) into the second, third, and fourth terms of Eqs. (11) and dependences
(10) into the fifth terms of Eqs. (11), we integrate Eqs. (11) with respect to the coordinate z from −h2 to η for l = 2
and from η to h1 for l = 1. As a result, we obtain

∂wi

∂t
+
∂η

∂t
∇ · ui +

Al

3
h2

l u0i · ∇
[
wi

(
1 + (−1)l 2η

hl

)]
+

(
∇ · ui −Bl

Dη

D0t

)
u0i · ∇η

− [(−1)lhl + η]
( 1
ρl

∇2pli + g∇2η
)
− h2

l

3

[ ∂
∂t

+
3
4

(
1 +Al

h2
l

5

)
u0i · ∇

] D

D0t
∇2η

−
η∫

−(−1)lhl

∇ ·
(
(ul · ∇)ul + wl

∂ul

∂z

)
dz =

1
ρl

(∇ · τlz −∇ · τiz) + νl∇η · ∂
2ul

∂z2

∣∣∣
z=0

. (12)

Here the shear stresses are τlz = νlρl ∂ul/∂z for z = (−1)lhl; corrections of the third order of smallness are omitted.
To calculate the remaining integrals containing second-order terms only, it is sufficient to find the linear relation
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between the horizontal components of fluid velocities and the interface disturbance. Let us consider the boundary
conditions and Eqs. (12) in the first approximation, i.e., with not only nonlinear, inertial, and capillary terms but
also unsteady shear being neglected:

( ∂

∂t
+Al

h2
l

3
u0i · ∇

) Dη
D0t

− (−1)lhl

( 1
ρl

∇2pi + g∇2η
)

= 0. (13)

From the condition of identity of these equations, which describe the same wave process, we determine the pressure
Laplacian on the interface:

∇2pli = −ρ1ρ2

(gH
χ

∇2η +Rfu0i · ∇ Dη

D0t

)
. (14)

Here χ = ρ1h2 + ρ2h1 and Rf = (ν1ρ1h2 + ν2ρ2h1)(ν2ρ2h
2
1 − ν1ρ1h

2
2)/(3ν1ν2ρ1ρ2h1h2χH). If the main disturbances

propagate only in a certain direction (the vector of the phase velocity of linear waves c is almost parallel to the
vector ∇η), we can replace the operators

∇η = − c

c2
∂η

∂t
, ∇2 =

1
c2

∂2

∂t2
.

Then Eq. (14) can be written as the dependence

∂2pli

∂t2
= −ρ1ρ2

[gH
χ

−Rfu0i · c
(
1 − u0i · c

c2

)]∂2η

∂t2
.

Integrating this equation once with respect to time, we obtain
∂pli

∂t
= −ρ1ρ2

(gH
χ

−Rfu
2
0c

)∂η
∂t
, u2

0c = u0i · c
(
1 − u0i · c

c2

)
.

Here the constant of integration is assumed to be zero, because ∂pi/∂t = 0 in the absence of disturbances, as it
follows from the previously made assumption. As a result, we have

∇pli = −ρ1ρ2

(gH
χ

−Rfu
2
0c

)
∇η. (15)

We integrate the linearized and dissipation-free horizontal components of the equations of motion (5) with respect
to the vertical coordinate z from −h2 to η for l = 2 and from η to h1 for l = 1. We substitute the velocity profiles (1)
into the second and third terms of these equations, the velocity profiles (9) into the third terms of these equations,
and the hydrostatic relations pl = pli + ρlg(η − z) and expressions (15) into the last terms of these equations. As a
result, we obtain the equations of motion in the horizontal plane

[
1 − Sc

2

(
1 +

Al

3
h2

l

)]∂ul

∂t
+

[ c

c2
gl + (−1)l u0i

2hl

c2f
c2

(
1 − Al

3
h2

l

)]∂η
∂t

= 0, (16)

where gl = ρ1ρ2(gH/χ − Rfu
2
0c)/ρl − g, Sc = u0i · c/c2, and c2f = c2(1 − Sc). Note that ul is independent of

the vertical coordinate in the approximation considered. Integrating Eqs. (16) with respect to time, we find the
relations between the horizontal velocities of the fluids and the interface disturbance:

ul = −cglhl + (−1)lu0ic
2
f (1 −Alh

2
l /3)/2

hlc2[1 − Sc(1 +Alh2
l /3)/2]

η =
cl

hl
η. (17)

As ul = 0 in the absence of disturbances under the assumptions made, the constant of integration is again set to
zero.

Determining the Phase Velocity and Shear Stresses on the Boundaries. To determine the phase
velocity c as a function of the magnitude and direction of the steady flow, we substitute ∇2pli from Eq. (14) into
system (13). We obtain the equation for the interface disturbance and seek for its solution in the form of a linear
monoharmonic wave propagating at an angle ϕ to the steady flow direction vector u0i. Thus, the absolute value of
the phase velocity is described by the formula

c =
∣∣∣|u0i| cosϕ(1 + Sf)/2 ±

√
c20 + u2

0i[cosϕ(1 − Sf )/2]2
∣∣∣,

where Sf = (ν1h2 + ν2h1)(ν1ρ1h2 + ν2ρ2h1)/(3ν1ν2χH) and c20 = gh1h2(ρ2 − ρ1)/χ. As it was expected, the
cocurrent flow increases the phase velocity of disturbances, while the counterflow decreases the phase velocity.
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To find the shear stresses τlz on all boundaries, we use the equations of motion (5) with nonlinear and
inertial terms being neglected:

∂ul

∂t
+ u0l · ∇ul + wl

du0l

dz
+ g∇η +

1
ρl

∇pli = νl
∂2ul

∂z2
. (18)

Using formulas (1) for u0l, formulas (9) for wl, and relations (15) for ∇pli, and replacing u0l · ∇ul by −(u0l ·
c/c2)(∂ul/∂t), we write the equations of motion (18) in the form

(
1 − u0i · c

c2
(1 −Alz

2 −Blz)
)∂ul

∂t
− u0i(2Alz +Bl)

(
1 + (−1)l z

hl

)Dη
D0t

+
(
(−1)l c

2
0

hl
+ ρ1ρ2

Rf

ρl
u2

0c

)
∇η = νl

∂2ul

∂z2
. (19)

Replacing ∂η/∂t in these equations by −c · ∇η and dividing all terms by νl, we obtain

∂2ul

∂z2
− 1
νl

(
1 − u0i · c

c2
(1 −Alz

2 −Blz)
)∂ul

∂t

= −gl

νl
∇η +

u0i

νl
(2Alz +Bl)

(
1 + (−1)l z

hl

)
[(c − u0i) · ∇η]. (20)

The solutions of Eqs. (20) are sought by the method of separation of variables:

ul(t, x, y, z) = u′
l(t, z)fl(x, y).

First we consider the boundary layers near the lid and bottom. In this case, z ≈ −(−1)lhl and the right sides of
Eqs. (20) are substantially simplified (become independent of z). Hence, applying the Laplace transform in time to
Eqs. (20), we obtain

∂2Vl(s, z)
∂z2

− s

νl
Vl(s, z) =

G∇l(s, x, y)
νlfl(x, y)

− u′
l0

νl
≡ P∇l(s). (21)

Here Vl(s, z) and G∇l(s, x, y)/νl are the images of u′
l(t, z) and the right sides of Eqs. (2) for z = −(−1)lhl. The

right sides of Eqs. (21) are functions of the variable s only, because their left sides are independent of the coordinates
x and y, and the fluid velocities in each layer are independence of the vertical coordinate z at the initial time t = 0.
Without decreasing accuracy, the assumption about a small thickness of the boundary layers allows us to pose a
condition of the absence of shear stresses at large distances from the surfaces considered: as z = −∞ for the lid, as
z = +∞ for the bottom, and as z = −∞ and z = +∞ for the interface (the boundary layers are almost “infinitely”
deeply immersed into the fluid).

After the replacement V ′
l = Vl + P∇lνl/s, we write Eqs. (21) in the form of linear homogeneous equations.

Then, we can readily find the solutions satisfying the boundary conditions Vl = 0 for z = −(−1)lhl and ∂Vl/∂z = 0
for z = (−1)l∞:

Vl(s, z) = P∇l(s)
νl

s

[
exp

(
−

√
s

νl
[(−1)lz + hl]

)
− 1

]
.

From here, we find the derivative at the lid and at the bottom:

∂Vl

∂z

∣∣∣
z=−(−1)lhl

= −(−1)lP∇l(s)
√
νl

s
.

Applying the inverse Laplace transform to these formulas, we obtain a convolution-type expression for viscous shear
stresses on the lid and bottom in the space of originals:

τlz = νlρl
∂ul

∂z

∣∣∣
z=−(−1)lhl

= (−1)l√νlρl

( gl√
π

t∫

0

∇η dt′√
t− t′

+
1√
πt

ul0(x, y)
)
. (22)

Note that t > 0 in Eqs. (22), and the terms containing the variables ul,0(x, y) and η0(x, y) exert some effect only in
the region disturbed at the initial time. The influence of these terms on the remaining space is insignificant.
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We consider the boundary layers near the interface [z ≈ 0 in the right sides of Eqs. (19), which also cease
to depend on the z coordinate]. Moreover, replacing ∇η by −(c/c2) ∂η/∂t, we obtain the equations of horizontal
motion

∂2ul

∂z2
− 1
νl

c2f
c2

∂ul

∂t
=

( c

c2
gl

νl
− u0i

Bl

νl

c2f
c2

)∂η
∂t
.

Using the Laplace transform in time, we write these equations in the form

∂2Vl

∂z2
− Vl

s

νl

c2f
c2

=
Gtl

νlfl
− ul0

νl

c2f
c2

≡ Ptl(s). (23)

Based on the joint solution of Eqs. (23) with the boundary conditions ∂Vl/∂z = 0 for z = −(−1)l∞ (because these
boundary layers are also almost “infinitely” deeply immersed into the fluid layers), V1 = V2 and ν1ρ1 ∂V1/∂z =
ν2ρ2 ∂V2/∂z for z = 0 (continuity of velocities and shear stresses), we find the profiles for the images:

Vl(s, z) =
(−1)l

sc

ψ

ψl
[ν2Pt2(s) − ν1Pt1(s)] exp

(
(−1)l

√
sc

νl
z
)
− νl

sc
Ptl(s).

Here sc = sc2f/c
2, ψl =

√
νlρl, and ψ = ψ1ψ2/(ψ1+ψ2). With repeated application of the inverse Laplace transform,

replacement for the gradient operator, and simple equalities
t∫

0

∇η(t′, x, y) dt′ = − c

c2

t∫

0

∂η(t′, x, y)
∂t′

dt′ =
c

c2
[η0(x, y) − η(t, x, y)];

these formulas yield the expressions for the horizontal component of velocity of the fluid particles and viscous shear
stresses on the interface:

ui = [η(t, x, y) − η0(x, y)]fs +
ψ1u1,0(x, y) + ψ2u2,0(x, y)

ψ1 + ψ2
,

fs = u0i
ψ1B1 + ψ2B2

ψ1 + ψ2
+ c

( c20
c2f

ψ2h1 − ψ1h2

h1h2(ψ1 + ψ2)
+ u0i · c Rf

c2
ρ1ψ2 + ρ2ψ1

ψ1 + ψ2

)
;

(24)

τiz = νlρl
∂ul

∂z

∣∣∣
z=0

=
ψ√
πt

cf
c

[u1,0(x, y) − u2,0(x, y)]

+
ψ√
π

cf
c

[
u0i(B1 −B2) − c

( c20H

c2fh1h2
− (ρ2 − ρ1)u0i · c Rf

c2

)] t∫

0

∂η(t′, x, y)
∂t′

dt′√
t− t′

. (25)

Note that t > 0 in Eqs. (24) and (25), and the terms containing the variables ul,0 and η0 affect only the region
disturbed at the initial time.

Finally, from Eqs. (18) for z = 0, we find the expressions for the second derivatives of unsteady velocities of
the fluids over the vertical coordinate near the interface of the layers, which enter the right sides of Eqs. (12):

νl
∂2ul

∂z2

∣∣∣
z=0

=
∂ui

∂t
+ u0i · ∇ui − u0iBl

Dη

D0t
− gl∇η. (26)

Thus, we have all relations necessary to derive the equation for the disturbance η(t, x, y).
Evolutionary Equation for Waves on the Interface. Substituting dependences (15), (17), and (26)

into the second-order terms of Eqs. (12), we obtain

∂2η

∂t2
+ u0i · ∇∂η

∂t
− u0i · ∇(ui · ∇η) +

Al

3
h2

l u0i · ∇
[(

1 + (−1)l 2η
hl

) Dη
D0t

+ ui · ∇η
]

− 1
2hl

(
(−1)l(cl · ∇)2η2 − cl · ∇Dη2

D0t

)
− (−1)l hl

ρl
∇2pli − (−1)lghl∇2η +

gl

2
∇2η2

− h2
l

3

[ ∂
∂t

+
3
4

(
1 +Al

h2
l

5

)
u0i · ∇

] D

D0t
∇2η =

1
ρl

∇ · (τlz − τiz). (27)
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In (27), a series of terms is grouped, which are integrated by parts:
0∫

−(−1)lhl

wl
∂ul

∂z
dz = ui

Dη

D0t
−

0∫

−(−1)lhl

ul
∂wl

∂z
dz = ui

Dη

D0t
− cl

2hl

Dη2

D0t
.

To reduce system (27) to one equation (eliminating pressure on the interface from the remaining linear terms), we
multiply Eq. (27) by h2/ρ2 for l = 1 and by h1/ρ1 for l = 2 and then sum up the resultant expressions to obtain

∂2η

∂t2
− c20∇2η + (1 + Sf )u0i · ∇∂η

∂t
+ Sf (u0i · ∇)2η − (1 − Sf )u0i · ∇(ui · ∇η)

−
[
H2

ρ

(1
3
∂2

∂t2
+

7
12

u0i · ∇ ∂

∂t
+

1
4

(u0i · ∇)2
)

+ SAu0i · ∇ D

D0t
− σ

h1h2

χ
∇2

]
∇2η

+
ρ1h2

2h1χ

( D

D0t
+ c1 · ∇

)
c1 · ∇η2 +

ρ2h1

2h2χ

( D

D0t
− c2 · ∇

)
c2 · ∇η2

− CNΔ∇2η2 −Rνu0i · ∇Dη2

D0t
=

1
χ
∇ · (h1τ2z + h2τ1z −Hτiz), (28)

where SA = h1h2(ρ1h
3
1A1 + ρ2h

3
2A2)/(20χ), CNΔ = [c20(ρ2h1/h2 − ρ1h2/h1) + u2

0cρ1ρ2RfH ]/(2χ), Rν = (ν2 −
ν1)(ν1ρ1h2 + ν2ρ2h1)/(3ν1ν2χH), and H2

ρ = h1h2(ρ1h1 + ρ2h2)/χ.
With allowance for the assumptions made on the long-wave character of low-amplitude disturbances and

on unidirectional propagation of these disturbances, the following replacements can be performed in second-order
terms: ∂η/∂t by −c · ∇η in nonlinear terms, ∇ by −(c/c2)∂/∂t in dispersion terms, and ∇2 by (1/c2) ∂2/∂t2 in
inertial and capillary terms. Then, Eq. (28) can be written as

∂2η

∂t2
− c20∇2η + (1 + Sf )u0i · ∇∂η

∂t
+ Sf (u0i · ∇)2η − (1 − Sf )u0i · ∇(ui · ∇η)

− Cd
∂2

∂t2
∇2η +

ρ1h2

2h1χ
(u0i − c + c1) · ∇(c1 · ∇η2) +

ρ2h1

2h2χ
(u0i − c − c2) · ∇(c2 · ∇η2)

− CNΔ∇2η2 −Rνu0i · ∇[(u0i − c) · ∇η2] =
1
χ
∇ · (h1τ2z + h2τ1z −Hτiz), (29)

where Cd = H2
ρ(1/3− 7Sc/12+S2

c/4)+SA(S2
c −Sc)− σh1h2/(c2χ). Substituting the expressions for shear stresses

on all boundaries of system (22), (25) and expressions for velocities near the interface (24) into Eq. (29), we obtain
only three unknowns in the resultant expression: η and ul0 (l = 1, 2) [the initial disturbance η0(x, y) is assumed
to be known], and ul0 enter only terms of the second order of smallness. Hence, ul0 can be replaced by clη0/hl in
Eq. (29), which yields the basic evolutionary equation for the disturbance:

∂2η

∂t2
+ (1 + Sf )u0i · ∇∂η

∂t
− c20∇2η + Sf (u0i · ∇)2η − Cd

∂2

∂t2
∇2η − CNxx

∂2η2

∂x2

− CNxy
∂2η2

∂x∂y
− CNyy

∂2η2

∂y2
+

t∫

0

(
CBxx

∂2η

∂x2
+ CBxy

∂2η

∂x ∂y
+ CByy

∂2η

∂y2

) dt′√
t− t′

= (fN0 · ∇)(η0u0i · ∇η) +
1√
πt

fL0 · ∇η0. (30)

The coefficients in this equation are determined only by geometric (h1, h2, and ϕ) and physical (g, ρ1, ρ2, ν1, ν2,u0i,
and σ) parameters of the problem considered:

CNxx = CNΔ −Rνu0i(cx − u0i) +
RS

2
u0ifsx +

k2xd2x − k1xd1x

2h1h2χ
,

CNxy =
RS

2
(u0ifsy+v0ifsx)−Rν [u0i(cy−v0i)+v0i(cx−u0i)]+

k2xd2y + k2yd2x − k1xd1y − k1yd1x

2h1h2χ
, RS = 1−Sf ,
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CNyy = CNΔ − Rνv0i(cy − v0i) +
RS

2
v0ifsy +

k2yd2y − k1yd1y

2h1h2χ
,

k1 = c1ρ1h
2
2, k2 = c2ρ2h

2
1, d1 = c1 − c + u0i, d2 = c2 + c − u0i,

CBxx = CBΔ +
ψH√
πχ

cxfBx, CBΔ =
ψ1g1h2 − ψ2g2h1√

πχ
, ψH = ψH

cf
c
,

CBxy =
ψH√
πχ

(cxfBy + cyfBx), CByy = CBΔ +
ψH√
πχ

cyfBy,

fB =
cc20H

c2fh1h2
+ u0i(B2 −B1) −Rf (ρ2 − ρ1)

c

c2
u0i · c,

fL0 =
ψH(c2h1 − c1h2) − ψ1c1h

2
2 + ψ2c2h

2
1

h1h2χ
, fN0 = RS

(ψ1c1h2 + ψ2c2h1

h1h2(ψ1 + ψ2)
− fs

)
.

The model equation (30) takes into account not only the long-wave contributions of inertia of the fluid layers and
surface tension, weak nonlinearity of disturbances and unsteady shear stresses on all boundaries of this system, but
also the steady flow of the viscous fluid in the horizontal channel. Note that the evolutionary equation (30) can also
be used to describe transformation of waves propagating in an arbitrary horizontal direction (at an arbitrary angle
to the flow velocity vector), while the terms in the right side of this equation differ from zero only in the region of
the initial disturbance.

Numerical Solutions of Problems on Transformation of Various Waves. Some results of calculations
based on an evolutionary equation similar to Eq. (30) are given in [6]. These calculations are performed with the use
of an implicit three-layer finite-difference scheme. Our model equations differ not only by the form of coefficients,
but also by the fact that Eq. (30) contains terms with mixed second derivatives. To eliminate terms containing one
derivative with respect to time and one derivative with respect to the horizontal coordinate, we pass to a reference
system moving with a velocity uf = u0i(1 +Sf )/2 in the direction with increasing x coordinate and with a velocity
vf = v0i(1 + Sf)/2 in the direction with increasing y coordinate. Then Eq. (2) can be written in the form

∂2η

∂t2f
− c20∇2

fη + Sf (u0i · ∇f )2η − (uf · ∇f )2η − Cd

R2
uv

∂2

∂t2f

( ∂2η

∂x2
f

+
∂2η

∂y2
f

)
− CNxx

∂2η2

∂x2
f

− CNxy
∂2η2

∂xf∂yf
− CNyy

∂2η2

∂y2
f

−
tf∫

0

(
CBxx

∂2η

∂x2
f

+ CBxy
∂2η

∂xf∂yf
+ CByy

∂2η

∂y2
f

) dt′√
tf − t′

=
1√
πt

fL0 · ∇fη0 + (fN0 · ∇f )(η0u0i · ∇fη). (31)

Here tf = t, ∇f = (∂/∂xf , ∂/∂yf), Ruv = 1 − c · uf/c
2, xf = x − uf t, and yf = y − vf t. Now Eq. (31) differs

from the equation derived in [6] by the fact that Eq. (31) ignores the bottom slope, while the equation [6] does not
contain terms similar to terms with mixed second derivatives with respect to the horizontal coordinates and the last
term in the right side of this equation (schemes for these derivatives, based on central differences, are commonly
known). Figures 2–4 show the evolution of solitary disturbances calculated with steps of 2 cm in the x direction,
10 cm in the y direction, and 0.5 sec in time.

First we consider problems where the initial disturbances (in the first and second time layers) are plane
(independent of the y coordinate) solitary waves

η = ηs secosh2(ξ/L), (32)

similar to a soliton (dissipation-free) solution of the one-dimensional equation (29):

L = Ls = U

√
6Cd

ηaCNxx
, U =

u0i(1 + Sf )
2

+

√
u2

0i(1 − Sf )2

4
+ c20 +

2
3
ηaCNxx (ξ = x− Ut).
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Fig. 2. Profiles of moderately long disturbances at different times t (h1 = 5 cm, h1/h2 = 5/4,
ρ1 = 1 g/cm3, ρ1/ρ2 = 0.98, ν1 = 1 mm2/sec, ν1/ν2 = 0.23, and σ = 45 mN/m): u∗

0 = −0.5 (a) and
0.5 (b); the solid and dashed curves are the calculations with allowance for unsteady shear stresses
and without allowance for dissipation, respectively; t = 0 (1), 15 (2), 30 (3), and 40 sec (4).

Hence, it is no problem to define the partial derivative with respect to time at the initial moment. Note that the
components of velocity of the horizontal flow v0l produce some effect only if the derivatives with respect to the y
coordinate differ from zero.

If the initial disturbances are moderately long [dependence (32) with L = Ls/2], their leading fronts become
less steep, and slowly decaying oscillations arise behind the fronts (see Fig. 2). As in the case without a steady
flow (see [7]), not only the disturbance amplitude decreases, but also dissipative tails appear. Figure 2 shows the
effect of unsteady shear stresses on the boundaries, because the value of the main dissipative coefficient CBxx at
u∗0 = −0.5 is approximately half its value at u∗0 = 0.5 (see [5]). For greater viscous losses, the oscillations behind
the main wave practically disappear, and disturbances do not change their sign.

If the initial wave is sufficiently long [dependence (32) with L = 2Ls], then, in the absence of dissipation,
the initial disturbance first takes the form of a triangular disturbance with a steep leading front and an extended
rear front, and later it transforms to a chain of solitary waves with decreasing amplitude (see Fig. 3). Allowance for
unsteady shear stresses does not allow the primary disturbance to grow and decelerates the formation of the chain
of solitons.

Let us consider the evolution of a weakly nonlinear wave, which is solitary in space. Figure 4 shows the
results calculated for the initial disturbance

η = ηs secosh2(ξx/Ls) secosh2(0.25ξy/Ls),

where ξx = x− tU cosα and ξy = y − tU sinα (α is the angle between the wave-propagation direction and the Ox
axis). The disturbance is seen to transform to a horse-shoe wave. Owing to the presence of a steady flow in the
transverse direction, the disturbance decays more intensely. A change in the initial direction of wave motion mainly
affects the asymmetry of the “horse-shoe arcs.”
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Fig. 3. Profiles of sufficiently long waves at different times t (h1 = 6 cm, h1/h2 = 2, ρ1 = 1 g/cm3,
ρ1/ρ2 = 0.98, ν1 = 1 mm2/sec, ν1/ν2 = 0.23, σ = 45 mN/m, and u∗

0 = −0.5): the solid and dashed
curves are the calculations with allowance for unsteady shear stresses and without allowance for
dissipation, respectively; t = 0 (1), 60 (2), 120 (3), 180 (4), and 240 sec (5).
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Fig. 4. Initial three-dimensional solitary disturbance (a) and wave shapes at t = 60 sec (b–d):
(b) α = 0, u∗
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0 = 0; (c) α = 0, u∗

0 = −0.5, and v∗
0 = −0.5; (d) α = −π/4, u∗

0 = −0.5,
and v∗

0 = −0.5 (the remaining parameters the same as in Fig. 2).
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Similar disturbances were previously observed on the surface of downward flowing liquid films (see, e.g.,
[8–10]), but the physics of the process is essentially different in these situations. The force returning the disturbed
horizontal boundary to the equilibrium position is the force of gravity, while the dispersion is predominantly caused
by the inertia of the layers and surface tension. For waves on the free boundary of the liquid film, the balance of
the force of gravity and shear stresses on the vertical solid wall generates a steady flow and determines the phase
velocity of disturbances. In addition, the waves on such a surface can move only in the downstream direction, while
the disturbances of the horizontal interface can also move in the upstream direction. Finally, in the case of waves
on the free surface of a vertical liquid film, horse-shoe configurations can be steady (dissipation is compensated by
pumping), while the decay of disturbances in a horizontal channel cannot be avoided in principle.

Conclusions. A model evolutionary integrodifferential equation is derived for moderately long waves with a
small but finite amplitude, which propagate at an arbitrary angle to the steady flow vector. The method proposed
can be used not only for stratified Poiseuille flow but also for other flow profiles. Transformation of nonlinear
solitary two-dimensional and three-dimensional disturbances is studied numerically with allowance for unsteady
shear stresses. The effect of the steady flow velocity and direction on the wave amplitude and shape is demonstrated.

The authors are grateful to P. I. Geshev and O. Yu. Tsvelodub for discussions of some aspects of the problem
and useful advice and to A. A. Litvinenko for the development of the original version of the calculation code.
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